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Abstract: The detection of moving objects in the video stream of a moving camera is a complex
task. Static objects appear moving in the video stream as moving objects. Thus, it is difficult to
identify motions that belong to moving objects because they are hidden by those of static objects.
To detect moving objects we propose a novel geometric constraint based on 2D and 3D information.
A sparse reconstruction of the scene is performed in order to detect motions in the 3D space where
the scene perception is not deformed by the camera motion. A first labeling estimation is performed
in the 3D space and then apparent motions in the video stream of the moving camera are used to
validate the estimation. Labels are computed through confidence values which are updated at each
frame according to the geometric constraint. Our method can detect several moving objects in
complex scenes with high parallax.

1 INTRODUCTION
Nowadays, using visual effects is common in movies.
These are integrated during the post-production stage and
the director can only guess the final result during shooting.
In order to help the director in his task, a preview of the
final result render could be provided onset. It requires to
combine virtual elements (visual effects) and real ones, with
spatial and temporal coherence. Since we cannot add mark-
ers to moving objects, it is necessary to detect them in the
video stream of the camera.

In this paper we propose a method to detect moving ob-
jects without any marker in the stream of a free moving
camera. We distinguish two types of motions: the apparent
motion: objects are static, but appear to be moving because
of the camera motion; the real motion: objects are mov-
ing in the scene and this motion is captured by the camera.
The apparent motions of the scene can be uniform or non-
uniform according to the scene setup. The camera motion
and the apparent motion of an object in the scene depends
on its distance to the camera and the camera motion. It is
difficult to identify apparent motions that belong to static
objects and those that belong to moving objects when the
camera film moving objects in a static scene. Moreover,
as the camera moves, some parts of the scene become vis-
ible while some other are occluded. Thus, it is necessary
to compute and include new information in the process of
moving object detection throughout the video sequence.

The contribution of this paper is a novel geometric con-
straint based on feature points extracted from video frames.
The geometric constraint relies on 2D and 3D information
to perform a robust moving object detection in the video
stream of a moving camera. This geometric constraint is
based on a set of static points used as a geometric reference
to update all feature point labels. When the camera moves,

the reference set has to be updated during the sequence by
adding and removing feature points.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews previous work related to moving object de-
tection; details of the proposed method are sketched in Sec-
tion 3; experimental results are described in Section 4; fi-
nally we conclude the paper and provide future directions
in Section 5.

2 STATE OF THE ART
Detecting and tracking moving objects in video has been
widely studied over the last decades. Various object detec-
tion approaches are reported in the literature. Moving object
detection with a stationary camera usually relies on back-
ground subtraction, (Sobral and Vacavant, 2014). A back-
ground model is described by a statistical model based on
pixel characteristics. The current image is then compared
to the background model to detect moving objects and the
background model is updated. Proposed approaches dif-
fer by elimination of noise due to shadows or illumination
changes for example.

The context of the movie industry requires using moving
cameras. Approaches that dealt with moving object detec-
tion in the stream of a moving camera can be divided into
three categories.

The first category of method uses motions to detect mov-
ing objects. In the video stream of a freely moving camera,
the static background appears moving. Trajectory segmen-
tation methods try to segment trajectories that belong to the
static scene and those that belong to moving objects. Meth-
ods proposed by Elqursh et al. (Elqursh and Elgammal,
2012) and Ochs et al. (Ochs et al., 2014) cluster trajecto-
ries using their location, magnitude and direction. Elqursh



et al. (Elqursh and Elgammal, 2012) label clusters as static
or moving according to criteria such as compactness or spa-
tial closeness, and propagate label information to all pix-
els with a graph-cut on an MRF. Ochs et al. (Ochs et al.,
2014) merge clusters according to the mutual fit of their
affine motion models and label information are propagated
with a hierarchical variational approach based on color and
edge information. Sheikh et al. (Sheikh et al., 2009) rep-
resent the background motion by a subspace based on three
trajectories selectionned in the optical flow. Each trajectory
is assigned to the background or the foreground depend-
ing on the trajectory fits to the subspace or not. Narayana
et al. (Narayana et al., 2013) use a translational camera
and exploit only optical flow orientations which are inde-
pendent of depth. Based on a set of pre-computed orien-
tation fields for different motion parameters of the camera,
the method automatically detects the number of foreground
motions. Methods based on trajectory segmentation gen-
erally assume that the apparent motion of the scene is pre-
dominant and uniform but this is not always true.

Another category of approach uses the background sub-
traction techniques with a moving camera. Using a mov-
ing camera with constrained motions allowed to construct a
background model of the scene. Each frame is then regis-
tered with the background model to perform the background
subtraction. The Pan Tilt Zoom (PTZ) camera is a con-
strained moving camera with a fixed optical center. The
key problem to perform background subtraction is to regis-
ter the camera image with the panoramic background model
at different scale. Xue et al. (Xue et al., 2013) proposed a
method that relies on a panoramic background model and
a hierarchy of images of the scene at different scales. A
match is found between the current image and images in
the hierarchy, then the match is propagated to upper level
until registration with the panoramic background. Cui et al.
(Cui et al., 2014) use a static camera to capture large-view
images at low resolution to detect motions in order to define
a rough region with the moving object. The high resolution
image of the PTZ camera is registered with the background
model with feature point matching and refines with an affine
transformation model. Background subtraction techniques
can also be used with a freely moving camera. In gen-
eral, the camera motion is compensated with a homography,
but when the camera undergoes a translational motion some
misalignments created by parallax can be detected as mov-
ing object. Romanoni et al. (Romanoni et al., 2014) and
Kim et al. (Kim et al., 2013) used a spatio-temporal model
to classify misaligned pixels relying on neighborhood anal-
ysis. Instead of registering the whole image, the method
proposed by Yi et al. (Yi et al., 2013) divided the image
into grids, each grid being described by a single gaussian
model. To keep the background model up-to-date, each
block at previous time is mixed with blocks in the cur-
rent image after registration. Two background models are
maintained to prevent foreground contamination. All these
approaches handled scenes with uniform apparent motion
of background but failed when the camera films a complex
scene closely.

The last category of methods approximating the scene by
one or several planes are Plane+Parallax and multi-plane
approaches. According to the motion of a freely moving
camera, motions of two static objects observed in the video
stream can have different magnitudes and orientations. The
Plane+Parallax methods extend the plane approximation
by taking into account the parallax. Some work have first
approximated the scene by a plane (Irani and Anandan,
1998; Sawhney et al., 2000; Yuan et al., 2007). This plane
is the physical dominant plane in the images and called the
reference plane. After registering consecutive images ac-
cording to the reference plane, the misaligned points are
due to parallax. In order to label these points as moving
or static, the authors propose geometric constraints based
on the reference plane. The Plane+Parallax methods only
handle scenes that can be approximated by one dominant
plane as aerial images. To be more general, the multi-
layer approaches approximate the scene by several virtual
or physical planes. Wang et al. (Wang and Adelson, 1994)
propose that each layer contains an intensity map, an alpha
map and a velocity map. The optical flow is segmented with
k-means clustering. Thus, each layer contains a smooth mo-
tion field and accumulates information corresponding to its
motion field over time. Jin et al. (Jin et al., 2008) gener-
ate a layer for each physical plane. The Random Sample
Consensus (RANSAC) is performed iteratively on the set
of feature points, previously matched between two frames.
The current frame is then rectified with homographies found
by RANSAC for each physical plane for background mod-
eling. Zamalieva et al. (Zamalieva and Yilmaz, 2014) dis-
cretize the scene with a set of hypothetical planes. A phys-
ical plane is selected arbitrarily as a reference plane and
parallel and equidistant hypothetical planes are generated
from the reference plane. A background model is main-
tained for each hypothetical plane and pixels are labeled
as background by maximizing the a posteriori probabil-
ity. Zamalieva et al. proposed another method (Zamalieva
et al., 2014) that selects the transformation that best de-
scribes the geometry of the scene. A modified Geomet-
rical Robust Information Criterion (GRIC) score is com-
puted to choose between the homography when the scene
can be approximated by one plane or the fundamental ma-
trix for several planes. The image is segmented into fore-
ground/background with motion, appearance, spatial and
temporal cues. Plane+Parallax methods assume there is
a dominant plane in the scene like aerial imagery. Using a
dominant plane in Plane+Parallax or in multi-planes meth-
ods, generally supposes that the plane has to be in the field
of view of the camera over the whole sequence. Multi-
planes methods approximating the scene by several planes
suffer from low performance when there is significant par-
allax because of the granularity of the scene representation.

To the best of our knowledge, proposed approaches to
detect moving objects in the video stream of a moving cam-
era cannot handle complex scenes when the camera is close
to the scene. In this case, and without prior knowledge, it
is difficult to deal with complex apparent motions or the
granularity of the scene representation. In this paper, we



present a method which goes further than multi-layer ap-
proaches by computing a sparse scene reconstruction. As
the Plane+Parallax method, we propose to use a geometric
constraint, but unlike this approach the constraint does not
rely on a plane but on several 3D points belonging to the
static part of the scene. We also use apparent motions as a
validation step of the labeling.

3 PROPOSED METHOD

Our goal is to detect moving objects in the video stream
of a freely moving camera. The intrinsic parameters of the
moving camera are assumed to be known. Our proposed
method works on feature points extracted and tracked with
the Large Displacement Optical Flow (LDOF) algorithm
(Brox and Malik, 2011). Each feature point is described
by a 2D image position p, an optical flow vector f over ∆t
frames, a 3D position P and a confidence value Con f . The
confidence value is a real value between −1 and 1. Each
feature point is labeled as moving or static depending if its
confidence value is close to −1 or 1 respectively.

li =

 moving if Con fi < εmoving
static if Con fi > εstatic
unknown otherwise

(1)

with εmoving ∈ [−1,0] and εstatic ∈ [0,1]. These values are
choosen from experiments for each sequence. Confidence
values close to zero are not considered distinctive enough
to decide between static and moving label and we thus in-
troduced a third label: unknown.

The update of the confidence value is based on a 3D ge-
ometric constraint over time. Let P t be the set of all feature
points at time t. Static points of the scene can be assimi-
lated to a rigid body noted N t ⊂ P t . In a rigid body, dis-
tances between any two points must remain constant over
time. Hence, a new feature point pt that appears in the video
stream of the camera is part of N t if its distance to any point
of N t−1 remains constant at time t. This defines our geo-
metric constraint that is used to update confidence values
over time. All feature points labeled as static at time t de-
fine a rigid body N t used as reference to update confidence
values for the next frame.

Since the geometric constraint is defined in 3D space, it
is necessary to estimate the 3D position of feature points.
Thanks to point matching provided by the LDOF algorithm
and the known intrinsic matrix, it is possible to reconstruct
3D positions of feature points from 2D information by ap-
proximating the camera motion. The essential matrix is
computed using the method proposed by Nistér (Nistér,
2004) on the rigid body N t . Then, the confidence value
of a feature point increases or decreases according to the
geometric constraint.

Before detecting moving objects, an initialisation step is
performed to estimate the first set of static points. To test
the 3D geometric constraint, 3D positions of feature points
are computed by estimating the essential matrix on feature
points belonging to N t−∆t∩N t for two consecutive frames.

Then, confidence values are updated to obtain a new labeli-
sation. Finally, a label validation is performed using 2D
information.

3.1 Reconstruction Scaling
Our 3D geometric constraint expressed the characteristic of
a rigid body by comparing distances between points from
two reconstructions of two consecutives frames. However,
the essential matrix used for the reconstruction of the scene
is estimated up to a scale factor depending on the camera
motion. Let R be the exact reconstruction, which is not
known. Let R t be the reconstruction obtained using the
method of Nistér (Nistér, 2004) at time t with R t ' stR .
Since we need to compare 3D distances over time to com-
pute our geometric constraint, we need two similar recon-
structions with the same scale factor. To make a reconstruc-
tion R t comparable with the previous one R t−1, we have
to estimate s such as s = st−1

st
and apply it to R t . First, we

estimate the ratio si, j of distances between two points i and
j as:

si, j =
dist(Pi−Pj)

t−1

dist(Pi−Pj)t ,Pi,Pj ∈N t−1∩N t (2)

Since the feature point extraction is in general noisy, it
would be unreliable to estimate the scale factor from only
two points. To suppress peak noise and choose the best
scale factor, we compute the median scale factor for each
feature point as:

si = median(si, j) (3)

The scale factor st applied to R t is then defined as the
median of all scale factors of feature points:

st = median(si) (4)

The reconstruction at frame t is scaled with previous ones
using st . Thus, the reconstruction stRt at time t can be com-
pared with a previous one st−∆tRt−∆t , with ∆t small (cf. sec-
tion 3.2), in order to update the confidence value.

3.2 Labeling Update
At each frame, the geometric constraint is tested for each
feature point in order to update its confidence value. The ge-
ometric constraint states that 3D distances between a point
Pi and all points in N remains constant between two re-
constructions at t and t−∆t. ∆t is chosen big enough to let
moving objects to move during ∆t time and small enough to
track a lot of feature points. N is divided into two subsets
V and I for each feature point Pi as follows:

V t = {Pt
j|Pt

j ∈N t ,Err(Pi,Pj)
t < εerr3D}

I t = N t\V t (5)

where εerr3D is defined from experiments and Err defines
the distance error between two frames as:



Err(Pi,Pj)
t = |dist(Pi,Pj)

t −dist(Pi,Pj)
t−∆t | (6)

and εerr3D is the threshold on distance errors to differ-
entiate a static point from a moving one. V t refers to the
subset of N t for which the geometric constraint, defined by
Equation (6), is verified and I t its complement.

These two subsets are used to update the confidence value
of Pi as follows:

Con f t
i =Con f t−1

i +U t
i (7)

where Con f t
i ∈ [−1,1], U t is an update value that is dif-

ferent according to the estimate state of the feature point as
explained below.

Static point update A feature point Pt
i is estimated static

over [t, t−∆t] if |V t
i | > α|N t | where α ∈ [0,1] defines the

proportion of N for which Pt
i verifies the geometric con-

straint. The level of certainty for which Pt
i is estimated

static is defined by the mean error Errt
i of distance errors

on V

Errt
i =

1
|V t

i |
∑

Pj∈V t
i

Err(Pi,Pj)
t (8)

From V defines in (5), Errt
i ∈ [0,εerr3D|. A mean error

close to 0 implied a high level of certainty on the rigid body
conservation. In this case, the point has to be immediately
updated tostatic. On the contrary, for a mean error closed
to εerr3D the level of certainty is low and the update value
has a low impact on the confidence value. This behavior is
depicted in figure 1 and defined as follows:

U t
i = re

−

(
Errt

i
εerr3D

)2

(9)

where r ∈ [0,1] is a coefficient that defines the minimum
number of frames necessary to label the feature point as
static. The update value is defined over [t, t−∆t] and mod-
ifies the confidence value which progresses over the whole
sequence to a static labeling.

Moving point update Conversely to the previous case,
a feature point Pt

i is estimated as moving over [t, t −∆t] if
|V t

i | < α|N t |. The level of certainty is the mean error of
distance errors on I

Errt
i =

1
|I t

i |
∑

Pj∈I t
i

Err(Pi,Pj)
t (10)

where Errt
i ∈ [εerr3D,maxerr] and maxerr is a parameter to

discard large distance errors. If Err(Pi,Pj)
t > maxerr then

we considered that Err(Pi,Pj)
t = maxerr. Since the feature

point is estimated as moving, the update value U t
i has to be

negative and adjusted according to the level of certainty as
follows:

U t
i =−re

−

(
Errt

i−maxerr
maxerr−εerr3D

)2

(11)

where r is defined as in the static case.

Figure 1: Curves of update values for a static point (blue)
and a moving point (red). Here r = 0.25, εerr3D = 0.10 and
maxerr = 1

Confidence values are updated with Equation (7) and a
first feature point labelisation is obtained thanks to Equa-
tion (1). This labelisation is used to initialise N t+1 for the
next frame.

3.3 Labeling Validation
The apparent motion of an object observed in the camera
image depends on the camera movement and the distance
between the object and the camera. Feature points with the
same optical flow generally are at the same distance from
the camera. We discard the case where a moving object has
the same optical flow than a static object. Although this case
might happen, it is very rare, thus we choose to ignore it.
These feature points are grouped in clusters C t

j = {(pt
i, f t

i )}
based on spatial and motion coherence by minimizing the
function E:

E(i, j) = EDir( fi, f j)+EMag( fi, f j)+EDist(pi, p j) (12)

where i and j refer to two feature points of P t . The first
two terms of E describe the similarity between two optical
flow vectors and the last term is the spatial closeness of two
feature points,


EDir( fi, f j) =

fi. f j
|| fi||×|| f j ||

EMag( fi, f j) = (ui−u j)
2 +(vi− v j)

2

EDist(pi, p j) = |pi− p j|
(13)

Clusters are constructed from the 2D geometric informa-
tion of their feature points. Thus, some clusters contain both
static and moving feature points. Since the geometric con-
straint is based on the structure conservation of the rigid
body, static feature points are generally correctly labeled
whereas moving ones are generated by a moving object or



noise. If a cluster has static and moving feature points, the
confidence value of the moving ones is reset to 0, labeling
them as unknown. Thus, false negative labels are removed
based on 2D cluster information. The case of clusters with
feature points labeled as static and unknown or moving and
unknown are considered static or moving clusters because
feature points labeled as unknown are too young or uncer-
tain to cast doubt on other labels.

3.4 Initialisation
We made no assumption about the scene or the motion of
the camera. The only information computed a priori are the
intrinsic parameters of the camera.

During the first frames, all feature points are labeled un-
known. However, our approach requires an initial set of
static feature points N to update labels from. Thus, an ini-
tialisation step is performed to compute the first set of static
points. During this step, which took only few seconds, the
camera has to film a part of the scene without moving ob-
ject. As there is no moving object, all feature points ex-
tracted are directly labeled as static with their confidence
value initialised to 1. Thus, N is already initialised when
moving objects appeared in front of the moving camera.

4 RESULTS AND DISCUSSION
Our method has been tested on virtual data generated with
a 3D graphics and animation software and on real data from
the Hopkins dataset.

Sequences from the Hopkins dataset contain one or sev-
eral moving rigid or non rigid objects captured by a moving
camera. In this paper, we present results on three sequences:
people1 contains one moving person; people2 contains sev-
eral people at the begining of the sequence and one person
at the end; cars8, cars9 and truck2 contain several moving
cars. We choose theses from those provided in the dataset
because they use a camera which moves all the time and
they contain objects that move significantly. Moreover, the
focal length does not have to change during acquisition be-
cause it would falsify the reconstruction. These conditions
are necessary to detect moving objects with our algorithm.
In our virtual sequences, the camera filmed a complex scene
with and without moving objects. virtual1a films one mov-
ing object whereas virtual1b uses the same camera motion
but without moving object. The same principle is applied
on virtual2a and virtual2b. The ground truth for the virtual
sequences is generated automatically with the 3D graphics
and animation software.

Our approach requires several parameters: intrinsic pa-
rameters and thresholds defined in Section 3. Intrinsic
parameters are computed once for a camera before the
program execution. They are provided with the Hopkins
dataset for real sequences and we compute them for virtual
data. Different thresholds are empirically chosen for each
sequence. Tresholds depend on the camera motion and the
scene structure and differ from one scene to the next. Our
approach also requires that no moving object appear in the

first frames for the initialisation step (cf. Section 3.4). To
test our method on real data, we remove feature points that
belonged to moving objects according to the ground truth
during the initialisation step. We created ground truth by
hand for real sequences and generated it for virtual ones.

Precision Recall F-measure
people1 lv 0.976688 0.995086 0.985801
people1 wlv 0.069364 0.995639 0.129692
people2 lv 0.984755 0.991843 0.988286
people2 wlv 0.399106 0.990830 0.569013
cars8 lv 0.983845 0.997893 0.990819
cars8 wlv 0.635618 0.996495 0.776160
cars9 lv 0.815916 0.993595 0.896032
cars9 wlv 0.742958 0.994546 0.850537
truck2 lv 0.971608 0.983969 0.977750
truck2 wlv 0.561764 0.988119 0.716299

Table 1: Performance table of three sequences from Hop-
kins dataset. Comparing the algorithm with (lv) and without
(wlv) the Labeling Validation step.

Results depicted in Figure 2 show that the approach is
able to detect one or several moving objects which are rigid
or non rigid. The second and third columns of Figure 2
show the difference between moving detection without and
with the Labeling Validation step. We observe that there are
a lot of false positive values when the Labeling Validation
is not used and there is no static point on moving objects.
The precision values in the table ?? reveal that the Label-
ing Validation step eliminated some false positive values to
improve the detection.

people1 and people2 sequences present high difference
for the precision value with and without the Labeling Val-
idation. Moreover, we observed that only the upper part
of bodies are detected. It is because our approach has to
track feature points on several frames and it is hard to track
points on legs that occlude each other. On the cars9 se-
quence, feature points at the bottom right corner are false
positive values since they belong to the road and are labeled
moving. These points could not be corrected by the Label-
ing Validation step because no feature points is labeled as
static in this area. However the wrong labeling of the first
frame of 2.c is modified in the last one (there are six frames
between the first and the last frame in 2). The precision val-
ues of cars8 and truck2 show that the Labeling Validation
step eliminated a lot of false positive values.

Precision Recall F-measure
virtual1a 0.999583 0.996685 0.998132
virtual1b 1.000000 0.998092 0.999045
virtual2a 0.999214 0.999057 0.999136
virtual2b 0.973649 0.999028 0.986175

Table 2: Performance table of virtual sequences. virtual1a
and virtual2a contained one moving object and virtual1b
and virtual2b had no moving object

Figure 3 shows the performance of our approach on vir-



tual sequences. Our method does not detect static objects as
moving even if they have an optical flow that differs from
others static objects. To point it out, we generate two se-
quences with the same camera motion: one sequence with
a moving object and one without. The same thresholds are
used in both sequences.

The virtual1 sequence contains circular and straight op-
tical flow. The moving object is accurately detected as well
as the static planar surface in both virtual1a and virtual1b.
However, some feature points of the planar surface on the
bottom right corner of the frame are false positive values. In
this experience the Labeling Validation step didn’t correct
them because there is no static feature point in this image
region.

In the second virtual sequence virtual2, the camera turns
around a static object. We observe that the static object
has an optical flow different from other static objects in the
scene. In virtual2a when the bottle moves, we observe that
feature points that belonged to static objects are hooked to
the moving object instead of disappearing when they are oc-
cluded. This erroneous tracking leads the Labeling Valida-
tion step to make a mistake by correcting labels. virtual2b
contained only static objects and few points belonging to
static objects are mislabeled because of noise.

5 CONCLUSION AND PERSPEC-
TIVES

In this paper we proposed a method to detect moving ob-
jects in the video stream of a moving camera. The main
contribution of this paper is the combination of 2D and 3D
information to avoid the mislabeling of static objects. Our
approach first estimates if a feature point is moving accord-
ing to 3D distances to a rigid body. Then, the 2D optical
flow corrects the estimation to suppress false positive labels.
The rigid body integrates feature points estimated as static
over time in order to keep the reference of 3D distances in
the field of view of the moving camera. The advantage of
3D distances to compute label estimations is that the infor-
mation is not distorted by the camera motion. Thus, if a
static object has an optical flow which differs from others,
it is still labeled as static.

Currently the user has to set thresholds of the algorithm
manually for each sequence. These thresholds depend on
the camera motion and the scene structure. It would be
interesting to estimate thresholds during the initialisation
step. Moreover, an additional step could be added to the
current process to propagate label information to the whole
image in order to extract silhouettes of moving objects.
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Figure 3: Results of feature points labeling. (a) virtual1a, (b) virtual1b, (c) virtual2a, (d) virtual2b. Green points are static
labels, red points are moving labels and blue points are unknown labels.


